ar X iv : m at h / 05 05 46 8 v 2 [ m at h . A P ] 2 2 A ug 2 00 5 INSTABILITY FOR SEMI - CLASSICAL SCHRÖDINGER EQUATIONS
نویسنده
چکیده
Using WKB methods for very small times, we prove some instability phenomena for semi-classical (linear or) nonlinear Schrödinger equations. The main step of the analysis consists in reducing the problem to an ordinary differential equation. The solution to this o.d.e. is explicit, and the instability mechanism is due to the presence of the semi-classical parameter. For nonlin-ear equations, our approach also allows to consider the presence of an harmonic potential and/or weaker nonlinearities. As an application, we retrieve some ill-posedness properties for nonlinear Schrödinger equations.
منابع مشابه
ar X iv : m at h / 05 05 46 8 v 1 [ m at h . A P ] 2 3 M ay 2 00 5 INSTABILITY FOR SEMI - CLASSICAL SCHRÖDINGER EQUATIONS
Using WKB methods for very small times, we prove some instability phenomena for semi-classical (linear or) nonlinear Schrödinger equations. Like in several recent papers concerned with instability or ill-posedness issues, the main step of the analysis consists in reducing the problem to an ordinary differential equation. The solution to this o.d.e. is explicit, and the instability mechanism is ...
متن کاملar X iv : m at h / 05 02 57 3 v 7 [ m at h . A G ] 8 A ug 2 00 6 ON DEFORMATIONS OF FLAG MANIFOLDS WITH
Any (global) kähler deformation of a flag manifold F with b2 = 1 is biholomorphic to F .
متن کاملar X iv : m at h / 98 03 12 9 v 1 [ m at h . SP ] 2 6 M ar 1 99 8 SEMI - CLASSICAL STATES FOR NON - SELF - ADJOINT SCHRÖDINGER OPERATORS
We prove that the spectrum of certain non-self-adjoint Schrödinger operators is unstable in the semi-classical limit h → 0. Similar results hold for a fixed operator in the high energy limit. The method involves the construction of approximate semi-classical modes of the operator by the JWKB method for energies far from the spectrum.
متن کاملar X iv : m at h / 05 08 29 7 v 1 [ m at h . ST ] 1 6 A ug 2 00 5 CONVERGENCE OF ESTIMATORS IN LLS ANALYSIS
We establish necessary and sufficient conditions for consistency of estimators of mixing distribution in linear latent structure analysis.
متن کاملar X iv : m at h / 05 01 13 9 v 2 [ m at h . FA ] 1 A ug 2 00 5 Stability of Adjointable Mappings in Hilbert C ∗ - Modules ∗
The generalized Hyers–Ulam–Rassias stability of adjointable mappings on Hilbert C∗-modules is investigated. As a corollary, we establish the stability of the equation f(x)∗y = xg(y)∗ in the context of C∗-algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005